
Few-shot Time-Series Forecasting with Application
for Vehicular Traffic Flow

Abstract—Few-shot machine learning attempts to predict
outputs given only a very small number of training examples.
The key idea behind most few-shot learning approaches is to
pre-train the model with a large number of instances from a
different but related class of data, classes for which a large num-
ber of instances are available for training. Few-shot learning has
been most successfully demonstrated for classification problems
using Siamese deep learning neural networks. Few-shot learning
is less extensively applied to time-series forecasting. Few-shot
forecasting is the task of predicting future values of a time-
series even when only a small set of historic time-series is
available. Few-shot forecasting has applications in domains
where a long history of data is not available. This work describes
deep neural network architectures for few-shot forecasting. All
the architectures use a Siamese twin network approach to
learn a difference function between pairs of time-series, rather
than directly forecasting based on historical data as seen in
traditional forecasting models. The networks are built using
Long short-term memory units (LSTM). During forecasting,
a model is able to forecast time-series types that were never
seen in the training data by using the few available instances
of the new time-series type as reference inputs. The proposed
architectures are evaluated on vehicular traffic data collected
in California from the Caltrans Performance Measurement
System (PeMS). The models were trained with traffic flow
data collected at specific locations and then are evaluated by
predicting traffic at different locations at different time horizons
(0 to 6 hours). The Mean Absolute Error (MAE) was used as
the evaluation metric and also as the loss function for training.
The proposed architectures show lower prediction error than a
baseline nearest neighbor forecast model. The prediction error
increases at longer time horizons.

Index Terms—vehicular traffic, one-shot classification, time-
series

I. INTRODUCTION

Time-series forecasting is the task of predicting future
values of a measurement given a sequence of past mea-
surements. Time-series forecasting methods have been ex-
tensively studied and has been applied in several domains,
notably in finance, business, and environmental studies [1].
Time-series forecasting has grown in importance in recent
years with the Internet-of-Things (IoT) and the large amount
of time-series data continuously produced by the embedded
sensors.

A common feature of most time-series forecasting methods
is that the forecast model is learned from a long record
of historical data. Thus forecasting can only be applied in
areas where sufficient historical data is available. “Few-shot”
learning approaches attempt to predict outputs given only a
very small number of training/historical examples. The key

idea behind most few-shot learning approaches is to pre-train
the model with a large number of instances from a different
but related class of data.

Few-shot learning has been most successfully demon-
strated in classification using deep learning neural net-
works []. For instance, a one-shot face classification system
can recognize a face of a new person given only one image of
that person’s face. This is enabled by pre-training the system
with several images of other persons’ faces. The lower layers
of the deep neural network then learn the features common
to all faces and only a few images from a new class (i.e.,
new face) are sufficient to distinguish an instance of the new
class from other classes.

However, few-shot learning has not been extensively ap-
plied to time-series forecasting, with a few notable excep-
tions [2]. Few-shot forecasting is the task of predicting future
values of a time-series even when only a small set of historic
time-series is available. Few shot forecasting has applications
in domains where a long history of data is not available.
For instance, time-series forecasting methods are used in
vehicular traffic prediction. Few-shot forecasting methods can
enable traffic prediction along new roads, along rural roads
where traffic records are sparse, or along pedestrian pathways
where sensors designed for vehicles are not applicable. In
these scenarios, few-shot forecasting can ensure that neural
network models do not need to be re-trained.

In this work, we developed and evaluated three deep
neural network architectures for few-shot forecasting. All the
architectures use a Siamese twin network approach to learn
a difference function between pairs of time-series, rather
than directly forecasting based on historical data as seen in
traditional forecasting models. The networks are built using
Long short-term memory units (LSTM). During forecasting,
a model is able to forecast time-series types that were never
seen in the training data by using the few available instances
of the new time-series type as reference inputs.

We evaluated the proposed architectures by forecasting
vehicular traffic using data collected in California. The mod-
els were trained with traffic flow data collected at specific
locations and then are evaluated by predicting traffic at
different locations at varying time horizons (0 to 6 hours).
Our evaluation shows that our straightforward Siamese twin
architecture does not produce accurate forecasts in a few-
shot setting. However, our two more complex architectures
show lower prediction error than a baseline nearest neighbor
forecast model. As expected, the prediction error increases



at longer time horizons.
The main contributions of this work are: 1) novel deep

learning neural network architectures that implement few-
shot time-series forecasting, and 2) evaluation of the pro-
posed architectures on large real-world datasets for vehicular
traffic forecasting.

The rest of the paper is organized as follows. Section II
lists related work in time-series forecasting. Section III
describes the problem of few-shot forecasting and the ar-
chitectures associated with our approach. Section IV gives
detailed information on the vehicular traffic dataset used to
evaluate this work. We present our results in Section V and
give our conclusions in Section VI.

II. RELATED WORK

Deep learning methods based on Long Short Term Mem-
ory (LSTM) have been found to produce accurate forecasts
from time-series data (e.g., [3]). However, these methods
are not designed for few-shot learning. The concept of one-
shot and few-shot learning has been proposed mostly for
classification models. Koch et al. [4] propose a one-shot
learning model for image classification of written characters.
Specifically, their approach trains a Siamese Convolution
Neural Network (CNN) to learn a difference function, rather
than traditionally training on images and labels. The Siamese
CNNs would share the same weights during training, and
their purpose was to encode two input images into a large,
flattened layer. The intuition is that the flattened layer would
capture differentiating features of the two compared character
images. Then the two flattened layers is fed into an element-
wise difference layer. Finally, the difference layer is fully-
connected into a single neuron, activated by the Sigmoid
function. A value of 0 would indicate that the two images
differ. A value of 1 would indicate that the two images
are the same. Using an n-way one-shot comparison, their
Siamese model was able to accurately classify new sets of
characters that were not included in the training set [4].
In our approach, instead of having a single output node
that represents a difference score, our proposed architectures
output a difference vector instead.

As in this work, LSTMs are used in the few-shot time-
series model proposed by Iwata and Kumagai [2]. However,
they do not use a Siamese network approach but add an
attenuation mechanism to a recurrent neural network. They
reason that time series data used as the training set may
carry similar features for forecasting a completely different
test set. They introduce an attention mechanism that captures
patterns based on support windows fed into the model called
a support set along with the test window. One of our proposed
models also includes an attenuation mechanism that aims to
generalize the patterns of all traffic data in the training set,
with the notion that the test set will follow these patterns too.

Transfer learning is another approach to forecasting given
insufficient historical data [5]. Transfer learning involves
taking a model trained with an abundance of certain data and
further retraining it with similar data. The main difference

from our approach is that our architectures do not require
re-training with a large collection of instances from the
new time-series type. The time savings from not requiring
retraining is useful in vehicular traffic forecasting application
as traffic patterns often change as new roads are built,
destroyed, or are under reconstruction.

Finally, the concept of meta-learning through neural net-
works has been proposed for time-series forecasting [6].
The goal of meta learning is to train on a diverse dataset,
understand overarching knowledge shared within the dataset,
and apply the knowledge to a different task without any
auxiliary references (zero-shot) [7]. Our model is not to be
zero-shot as it requires a reference instances to achieve a
higher forecasting accuracy.

III. PROBLEM STATEMENT AND APPROACH

The problem of Few-shot time-series forecasting can be
stated as follows:

Let l(w) denote the length of a time-series w. Given a
set of time-series, W, and and a much shorter time-series, x,
where l(x) << l(w),w ∈ W , forecast the future values of
x at time l(x) + h, xl(x)+h, where h is called the forecast
horizon.

A. Few-Shot Forecasting Models

We describe three Few-Shot Forecasting Models (FSFMs).
All three models use Long short-term memory units
(LSTM) [8]. The main advantage of LSTM as compared
to a standard cell in a Recurrent Neural Network is the
addition of an update gate and a forget gate to control the
flow of temporal information whilst keeping a hidden state
within the network [9]. Each model is structured as a Siamese
neural network – given pairs of historical time-series data,
it attempts to predict the difference between their forecasts.
Thus, the FSFM models learns through a difference function,
rather than directly forecasting based on historical data seen
in traditional forecasting models.

1) Siamese FSFM: The Siamese FSFM is created using
two identical LSTM neural networks, meaning that the
architecture and weights of both networks are identical
throughout training (Fig. 1). Each twin is comprised
of 128 LSTM units with return sequences set to true.
This allows for 128 features to be observed for every
single time-step of the historical input data. This is
fed to a Dropout layer with a weight of 0.2, which
helps prevent over-fitting during training. A Flatten
layer is applied to unravel the data into one dimension
of nodes. This layer is fully-connected to a dense
layer with 24 nodes—the number of time steps in the
forecast horizon. That is the output of the Siamese
LSTM module. The output is a pseudo-forecast of the
historical data input. Notice that this pseudo-forecast
does not have to match the true forecast values. The
pseudo-forecast can be any sequence of values so long



as the difference between the two Siamese pseudo-
forecasts is accurate as the model is learning a differ-
ence function, rather than directly forecasting. Finally,
the two pseudo-forecasts are run through an element-
wise difference layer to output the difference vector.

Fig. 1. The pairs (⃗href , h⃗test) are passed into their own Siamese sibling.
Each Siamese sibling produces a pseudo-forecast. The difference is taken
between those two vectors and outputs the difference vector d⃗. During
testing, this difference can be used to calculate the forecast of a test window:
f⃗test,test = f⃗test,ref − ⃗dtest.

2) Difference FSFM: The Difference FSFM is created
using just a LSTM model identical to one of the twins
in the Siamese FSFM (Fig. 2). First, the difference
of the reference historical data and the test historical
data is immediately taken and then fed into the model.
The output is the difference vector. An advantage of
this model is the ability to generalize to any time-
series data. However, by taking the difference of the
historical data initially, the model loses knowledge of
the general shape of the input window. Therefore, this
model cannot capture specific features of the historical
data to make more accurate forecasts.

Fig. 2. The difference between h⃗ref and h⃗test is initially taken and then
fed to the LSTM network to output the difference vector d⃗.

3) Combined FSFM: The Combined FSFM is created
using the Siamese-twins model as an attenuation mech-
anism for the Difference FSFM (Fig. 3). In addition,
the Siamese network in this architecture uses a CNN
instead of an LSTM. The CNN captures particular
features from shorter segments of the input data.
Specifically, the model uses two Conv1D layers. The
first layer has 32 filters and a kernel size of 3. The
second layer has 64 filters and a kernel size of 3.
Both layers use the Rectified Linear Activation Unit
(ReLU) as its activation function. ReLU prevents van-
ishing gradients when training on deep networks with
uninitialized weights such as in our architecture [10].
Then the difference between the two CNNs are taken

before being concatenated with the difference of the
historical data. This is fed into the LSTM module along
with the difference input.

Fig. 3. The Siamese CNN in blue is used as an attenuation mechanism to
the Difference Model. The model concatenates the cells with (⃗href - h⃗test)
before being fed to the LSTM network.

B. Pair-wise Training

The inputs to the models are pairs of historical time-
series, (⃗href , h⃗test) called the reference window and the
test window respectively. The reference window acts as a
baseline to compare its traffic flow with the test window.
The fluctuating differences between the historical data will
reveal the fluctuating differences between their forecasts.
By knowing the difference between the forecasts, d⃗, one
would only need to additionally know the forecast of the
reference window, f⃗ref , to estimate the forecast of the test
window, f⃗test. Therefore, given just the historical data of a
test window that is similar to the reference window, the model
can predict a difference vector of their forecasts rather than
an actual forecast. Then, the difference can be subtracted
from the known forecast of the reference window to achieve
the predicted forecast of the test window: f⃗test = f⃗ref − d⃗.
Learning how to predict differences allows the model to (1)
generalize to other windows that were never seen in the
training data before and (2) require only a few instances of a
new class of time-series, used as reference windows, to make
predictions for a given test window.

The reference and test window pairs are restricted to the
same station and the same days of the week. For example,
given an arbitrary station called Station A, all its windows
spanning 24 hours of a Sunday and 6 hours of a Monday are
paired. After that, a 6 hours stride is taken for the next set
of window pairs. Hence, all windows of Station A spanning
18 hours of Sunday and 12 hours of Monday are paired. The
process is continued until all possible 30-hour time spans for
the windows are paired. The size of the dataset is O

(
n2 ·m

)
,

for n is the number of windows created from the station
through the sliding windows method, and m is the number
of stations in the dataset.

The magnitude of the data values between instances of
different classes can vary widely, yielding a high standard
deviation. For example, vehicular traffic at some locations
is much heavier than others. Normalizing features with
high standard deviations significantly improves model accu-



racy [11]. Every window pair is therefore normalized by Min-
Max Scaling based on the test window using the formula:

hi − hmin

hmax − hmin

where hi is the value at timestep i of h⃗ref and h⃗test, hmax

and hmin are the maximum and minimum value of the test
window’s historical data, h⃗test, respectively. Inverting the
Min-Max scale after prediction is necessary as the window
pairs are the model’s input data. The model’s output data
is the difference between the forecast data of the respective
window pairs given by: d⃗ = f⃗ref − f⃗test. The models are
trained with pair-wise inputs: (⃗href , h⃗test) and target output:
d⃗.

All the FSFM models are trained under the same param-
eters. The batch size is 512, which is chosen for the main
purpose of reducing training time. Although, large batch sizes
with respect to the small size of a training instance leads
to poor generalization. A smaller batch size closer to 32
introduces noise to the gradients, which improves finding flat
minimizers in the loss function [12]. The Adam Optimizer is
chosen with an initial learning rate of 0.0001 ·

√
batchsize.

The initial learning rate of 0.0001 is empirically chosen as
it produced the quickest descent in loss within 100 epochs.
The learning rate is further scaled by

√
batchsize to further

reduce training time [13]. The loss function for training is the
Mean Absolute Error (MAE). The MAE is chosen instead of
the commonly used Mean Squared Error (MSE)to reduce the
impact of outliers in the real-world data.

IV. DATASET

California Department of Transportation’s (Caltrans) Per-
formance Measurement Systems (PeMS) collects real-time
traffic data using approximately 40,000 loop detectors hidden
throughout the freeway system pavements [14]. The data
is then sent to a central database over the Caltrans Wide
Area Network to be archived. We use the archived data in
this work to evaluate the time-series forecasting methods.
The data represents the mobility (the average point-to-point
travel time) and reliability (the day-to-day variability between
the expected average travel time and the actual travel time)
of traffic at different time-resolutions and therefore can be
considered a large repository of time-series. PeMS data
can be analyzed to monitor traffic congestion at individual
freeway segments at varying time intervals such as a certain
time of day, day of the week, season, and year.

A. Data pre-processing

We next describe the steps to prepare the 5-minute reso-
lution traffic data retrieved from PeMS’s Data Clearinghouse
for training and evaluation. The dataset is composed of daily
features for a station, sampled every 5-minute period. PeMS
provides data that measures traffic speed, the number of cars
in a segment, vehicle-miles traveled, vehicle-hours traveled,
and hours of delay. In this work, the training dataset consists
of only one feature — Total flow. Total flow is defined as the

sum of vehicles over a 5-minute period across all lanes of a
station. Data from the entirety of 2019 from the over 2000
stations in District 12 (Orange County in southern California)
is used for training. Stations with data quality issues are
removed from the training dataset. For instance, stations that
record zero traffic flow for many weeks and months at a time.
This happens when a station is either located in a rural area,
is under construction, or is even removed entirely.

We also adjust the training dataset to account for daylight
savings time. The PeMS dataset includes one hour of repeated
data during the spring forward hour and excludes one hour
of data during the fall back hour of daylight savings time.
To handle the case of repeated data, the extra hour of data is
simply removed. To handle the case of missing data, a simple
imputation technique estimates the missing data by averaging
the sampled total flow from the hour before and the hour
after. Other anomalies such as unusually high traffic flow
(magnitudes higher than the previous and future timesteps)
due to invalid sensor data have already been vetted by PeMS.
At the end of these pre-processing steps, the total number of
stations in the dataset is 1793.

B. Creating the Training Instances

Each station represents a ”class” in this application. An
instances of the class is a window representing its traffic flow
for 30 hours: 24 hours of historical data and 6 hours of the
known forecast. A week’s worth of traffic flow data can be
split into multiple windows via the sliding window method.
The size of the sliding window is 30 hours and the stride
is 6 hours. The traffic flow data is re-sampled from every
5 minutes to every 15 minutes. A period of 15 minutes is
chosen because a higher resolution would introduce too much
variance that does not carry meaningful patterns conducive
to generalizing to multiple stations [15]. Also, prior work has
shown that a period of 15 minutes leads to higher accuracy
in ARIMA models when forecasting 6 hours, as the number
of horizon time-steps is reduced to 24 [16]. The historical
data of 24 hours (96 time steps) is chosen due to the limited
amount of memory available when training the models.

Common historical data lengths with a 6 hour forecast (24
time steps) is usually several days to a week. One problem
with such a short historical data length in this approach
is the lack of context within a week. A window may not
differentiate a weekday that forecasts into another weekday,
a weekday that forecasts into a weekend, or a weekend that
forecasts into a weekday. Thus, in addition to the total flow,
the day of the week is added to the dataset as a feature. The
day of the week is represented as an integer between 0 and
6 (denoting Sunday through Saturday respectively).

V. RESULTS AND DISCUSSION

The Forecasting Models (FSFM) are implemented using
the Keras library. The training environment involves the
libraries: Python v3.9.12, TensorFlow-GPU v2.6, Numpy
v1.21.5, Pandas v.1.4.1, and Matplotlib v.3.5.1. Training is



performed with an Intel® Core™ i7-4790K CPU and a
NVIDIA GeForce GTX 1070 GPU.

The models are trained on the PeMS dataset, specifically
data from the stations of District 13, which covers Orange
County. Data from the stations of District 3, which covers
all counties in North Central California, is used to test the
accuracy of the FSFMs.

Tracking the accuracy of the model during training is
based on the accuracy of forecasting the validation set. The
validation set is commonly a subset of the training dataset
in traditional neural networks. However, the validation set of
FSFMs should be exclusive from the training dataset. In this
case, the training dataset is built from the stations of District
13, and the the validation dataset is built from the stations
of District 3.

We evaluate model performance using the Mean Absolute
Error (MAE) metric:

MAE(p,a) =

∑n
i=1 |ai − pi|

n

where n is the number of stations, ai is the actual forecast
of the total flow of vehicles for stationi at a given timestep,
and pi is the predicted forecast of the total flow of vehicles
for stationi at the same given timestep. This equation is
be calculated 24 times for each of the 24 timesteps of the
forecast horizon. Such error measurements are taken after
inverting the normalization from the Min-Max Scaling.

The Nearest Neighbor Model (NNM) was implemented to
provide a baseline when comparing prediction accuracy to
the Difference and Combined FSFMs. For its prediction, the
NMM takes the exact forecast from the reference window
whose historical data matches closest to the test window’s
historical data measured via Euclidean distance.

In our experiments, the Siamese FSFM provided the
most accurate predictions on the training set (District 12)
based on having the lowest MAE loss. However, this model
failed to generalize to the validation set (District 3). This
is because the last two layers are Flatten and Dense layers.
As these layers are fully connected, the magnitude of their
weights overwhelms the weights of the hidden states of
the prior LSTM network. The weights created from the
Flatten and Dense layer overcompensates towards matching
the target difference vectors that it overfits. Therefore, the
simple Siamese FSFM architecture fails to generalize and
is subsequently not viable for few-shot forecasting. As the
Siamese FSFM’s forecasts are less accurate than the NNM,
we omit them from the results.

Fig. 4 compared the decrease in loss while training the
different models. The loss is the MAE of the difference
vector, which is normalized during training with the Min-
Max Scaling method described in Section III-B. This vali-
dation loss is automatically calculated by the Keras library
after every epoch during training. The validation data is
composed of over 900 stations from District 3 as to not bias
towards a few number of stations. The Combined FSFM has a
slightly lower validation MAE before increasing due to over-

Fig. 4. Comparing the validation loss of two models: the Difference FSFM
and the Combined FSFM. The Difference FSFM has a minimum of 0.05478
at epoch 55. The Combined FSFM has a minimum of 0.05445 at an epoch of
63. A Savitzky-Golay filter is used with window length of 31 and polynomial
order of 2 to smooth out the two plots.

fitting. Such a slight improvement infers that the Combined
FSFM is not expected to outperform the Difference FSFM
for every arbitrary station data. Rather, the Combined FSFM
will provide more averaged accurate results amongst a large
number of windows from 900 stations. In fact, in many
windows, the Difference FSFM would have often similar or
even more accurate forecasts than the Combined FSFM.

Fig. 5. Both the Difference FSFM and Combined FSFM have lower MAE
than the NNM. The Combined FSFM has a slightly lower MAE than the
Difference FSFM.

We next compare the prediction error of the different
approaches at different forecast horizons. Fig. 5 shows these
errors. A one week window is used as a reference to forecast
20 different future windows for each of the 50 random
stations chosen in District 3. However, stations can vary in
traffic flow. Stations with too few traffic flow would yield a
lower MAE, biasing the average MAE lower. Stations with
too much traffic flow would yield a height MAE, biasing the



average MAE higher. Therefore, the 50 stations are limited
to having a similar magnitude of maximum traffic flow —-
between 100 and 1000 vehicles. As expected, the MAE of the
Difference and Combined FSFM converges with the NNM
for bigger forecast horizons. However, both the Difference
and Combined FSFMs have noticeably lower MAEs for the
first 10 timesteps.

We next show the actual forecasts made by the baseline
NNM model and the Difference FSFM and Combined FSFM
for a 30-hour window using the data from a randomly
selected station (Figure 6). The Difference FSFM generalizes
reasonably well; however, having the model miss the overall
pattern of the historical data limits its forecasting accuracy.
The Combined FSFM offers the extra attenuation with the
Siamese CNN, which provides slightly greater accuracy.
These results indicate that calibrating the amount of contri-
bution between the attenuation mechanism and the historical
data difference before concatenation could offer the higher
forecast accuracy.

Fig. 6. A single 30-hour window taken at a random time in 2019 for Station
317933, which happens to measure a High-Occupancy vehicle lane. The left
of the dotted vertical line shows the historical data of the test window. The
right of the dotted vertical line shows the comparison between the Naive
NNM, Difference FSFM, and Combined FSFM.

VI. CONCLUSIONS AND FUTURE WORK

We presented a method of extending few-shot classification
to time-series forecasting. We introduced three models that
learn to predict a difference vector, rather than a direct
forecast. The Siamese FSFM failed to generalize to traffic
data outside of the training set. The model that had the
highest forecasting accuracy based on having the lowest
MAE is the Combined FSFM. The attenuation mechanism
in the Combined FSFM provided only slightly greater ac-
curacy. These results indicate that calibrating the amount
of contribution between the attenuation mechanism and the
historical data difference before concatenation could offer
greater forecast accuracy.

The proposed architectures have several hyperparameters.
Hyperparameters that could be fine tuned are batch size,
learning rate, the size of the training data, the length of the
historical time-series, and the length of the forecast horizon.

The layers of the architecture can also be modified such as
the amount of LSTM cells, CNN cells, Dropout rate, and
the Subtraction layer. Other types of architectures that use
LSTMs such as the Encoder-Decoder model could also be ex-
plored, especially for sequence-to-sequence prediction [17].

The current approach was evaluated only on univariate
time-series data. Adding features, or a spatial component for
temporal forecasting, are avenues for future work. We intend
to augment this method to create an FSFM that can be used
for other types of time-series data such as stream-flow data
from rivers.

ACKNOWLEDGMENT

Removed for double-blind review

REFERENCES

[1] J. G. De Gooijer and R. J. Hyndman, “25 years of time series
forecasting,” International journal of forecasting, vol. 22, no. 3, pp.
443–473, 2006.

[2] T. Iwata and A. Kumagai, “Few-shot learning for time-series forecast-
ing,” arXiv preprint arXiv:2009.14379, 2020.

[3] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at Uber,” in International
conference on machine learning, vol. 34. sn, 2017, pp. 1–5.

[4] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural networks
for one-shot image recognition,” in ICML deep learning workshop,
vol. 2. Lille, 2015, p. 0.

[5] A. Hooshmand and R. Sharma, “Energy predictive models with lim-
ited data using transfer learning,” in Proceedings of the Tenth ACM
International Conference on Future Energy Systems, 2019, pp. 12–16.

[6] C. Lemke and B. Gabrys, “Meta-learning for time series forecasting
and forecast combination,” Neurocomputing, vol. 73, no. 10-12, pp.
2006–2016, 2010.

[7] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio,
“Meta-learning framework with applications to zero-shot time-series
forecasting,” CoRR, vol. abs/2002.02887, 2020. [Online]. Available:
https://arxiv.org/abs/2002.02887

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recur-
rent neural network architectures for large scale acoustic modeling,”
Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, pp. 338–342, 01 2014.

[10] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML Workshop on Deep
Learning for Audio, Speech and Language Processing, 2013.

[11] J.-M. Jo, “Effectiveness of normalization pre-processing of big data to
machine learning performance,” The Journal of the Korea Institute of
Electronic Communication Sciences, vol. 14, pp. 547–552, 06 2019.

[12] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization
gap and sharp minima,” CoRR, vol. abs/1609.04836, 2016. [Online].
Available: http://arxiv.org/abs/1609.04836

[13] D. Granziol, S. Zohren, and S. Roberts, “Learning rates as a function
of batch size: A random matrix theory approach to neural network
training,” Journal of Machine Learning, p. 30, 2020.

[14] C. Chen, K. Petty, A. Skabardonis, P. Varaiya, and Z. Jia, “Freeway
performance measurement system: mining loop detector data,” Trans-
portation Research Record, vol. 1748, no. 1, pp. 96–102, 2001.

[15] D. Levinson, “Spatiotemporal short-term traffic forecasting using the
network weight matrix and systematic detrending,” Transportation
Research Part C Emerging Technologies, pp. 38–52, 2019.

[16] R. Martoglia and G. Savoia, “Towards multi-model big data road traffic
forecast at different time aggregations and forecast horizons,” in 8th
EAI International Conference on Mobility, IoT and Smart Cities. EAI,
2022.

[17] Z. Wang, X. Su, and Z. Ding, “Long-term traffic prediction based on
lstm encoder-decoder architecture,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 10, pp. 6561–6571, 2020.


