
Semantic Segmentation using the EdgeTPU to
Assist Visually Impaired People Navigate Indoor

Areas
Victor Tran

Department of Computer Science
California State University, Fullerton
Fullerton, United States of America

victorvantran@csu.fullerton.edu

Aneesh Reddy Sannapu
Department of Computer Science

California State University, Fullerton
Fullerton, United States of America

aneeshreddysannapu@csu.fullerton.edu

Kayhan Bakian
Department of Computer Science

California State University, Fullerton
Fullerton, United States of America

kayhanbakian@csu.fullerton.edu

Kanika Sood
Department of Computer Science

California State University, Fullerton
Fullerton, United States of America

kasood@fullerton.edu

Abstract—Recognizing the limited supply and high cost of
alternative solutions such as guides, it’s incredibly important to
create an affordable and accessible means of mapping walkable
paths for visually impaired individuals. In this paper, we present
a model built around image segmentation and object detection
that utilizes a mix of deep learning strategies and traditional
models to identify obstacles in real-time. Our approach lays the
foundation for changing the way the visually impaired can sense
the world by offering an assistance system for indoor navigation.

Index Terms—semantic segmentation, EdgeTPU, DeepLabV3,
Residual Network, Post-quantize-aware training, Full Integer
Quantization.

I. INTRODUCTION

With technological advancements ushering in a new age
of progress, new ways to ameliorate those living with the
symptoms of disabilities have been pursued. The ailment we
focused on in this paper is that of visual impairment. Currently,
one of the most common tools utilized by the visually impaired
is the white cane, which helps them gather a sense of their
surroundings. However, only 2-8% of individuals use them
[1]. The majority of individuals rely on their usable vision, a
seeing guide, or a guide dog [2]. While seeing-eye dogs and
caregivers are very useful, they are not readily available or
affordable in some cases.

Semantic segmentation is based on the idea of breaking
up a single image into multiple segments that can be an-
alyzed, allowing us to take a very complex initial image
and simplifying it to allow for the model to perform better.
The concept has been tinkered with since the 1980s but
with the advancement of deep learning and neural networks,
it’s become an incredibly powerful tool with applications in
medical analysis, image compression, video surveillance, and
even augmented reality among others [3].

II. RELATED WORK

Previous approaches to utilizing image recognition software
for object detection has been thwarted by the depth of com-
plexity with which it must be able to analyze. The combination
of low-level images and high amounts of context necessary
in order for the program to recognize an image in real-time
made it so the performance of traditional machine learning
models tended to stagnate. However, with the onset of Deep
Learning algorithms and the evolution of Convolutional Neural
Networks, the effectiveness of Object Detection has greatly
increased [4].

This work is in line with the technological landscape
as it puts a focus on real-time detection by mixing neural
networks and traditional machine learning models to identify
the best performance which can trace the walkable path for an
individual who is visually impaired. This project builds on the
adjusted focus of using sensory outputs to map the path around
an individual. While previous papers used audio cues, in the
future we will attempt to add a heat map that gets warmer the
closer to an object an individual is [5].

After analyzing previous works on the topic of object
detection, the most popular method noted was the YOLO
algorithm. The algorithm divides the whole image into N*N
equal-size grids, where each cell will predict if there is an
object or not by assigning 0 if no object is detected and
greater than 0, i.e. (0.1 - 1) if there is an object. The bounding
boxes are formed by analyzing each cell and its corresponding
probability. Intersection over unions is then used to combine
all the bounding boxes constructed for each individual object,
detecting the object.[6]

Previous studies of walkable path detection have used tensor
graphs. The tensor graph is positioned in the center of the
image and is subdivided into three parts: left boundary, middle



boundary, and right boundary. If the detected object falls under
the middle bounding box, it alerts the person to stop walking.
it then checks if either the left or right boundary are obstacle
free. If an accessible path is found, it suggests the person to
move towards that side. The whole process is repeated until
the person reaches their destination [7].

III. PROBLEM STATEMENT AND APPROACH

There are currently more than 2.2 billion individuals with
near or distance vision impairment, and over 43 million suf-
fering from blindness [1]. One tool that can be explored is the
usage of live camera feeds and machine learning algorithms
to help individuals detect obstacles in their path, ensuring
they can avoid collisions. This would be easily accessible and
could be an attachment to a regular cane in the future. The
camera feed would translate images into arrays of pixels which
would be processed using semantic segmentation and objection
detection.

This work utilizes the Google Coral with the Edge Tensor
Processing Unit (EdgeTPU) chip which allows us to run
specially trained, small, neural network models on portable
devices with fast inferences times [8]. Recognizing that con-
stant environment shifts would necessitate quick processing,
by using the EdgeTPU we can get around 10 segmentation
map updates per second. The EdgeTPU also allows us to use a
quantized-model, lowering our data storage needs and making
it a more light-weight solution [9].

IV. DATASET

In this work, we use the ADE MIT Scene Parsing Bench-
mark Dataset [10]. The dataset comprises more than 22,210
images of indoor and outdoor scenes ranging from living
rooms, bathrooms, suburban streets, urban districts, and more.
Each image is provided with a respective segmentation image,
comprising of colors mapped to 150 total semantic categories
known as classes. These classes encompasses the most com-
mon objects encountered daily. Such as: tree, bed, mountain,
wall, sky, and box. The segmentation image is the exact
dimension of the image it is representing. The difference is
instead of the original red, blue, and green (RGB) pixel values,
the segmentation images hold unique colors that map to each
class.

First, we familiarize ourselves with the dataset by writing
auxiliary code to acquire, plot, and edit every instance. We
observe that some segmentation images have unclassified
labels. These labels, seen as pixels, are missing information are
considered instances of the invalid class. Some instances have
large chunks of invalid pixels, commonly on certain objects
that cannot be categorized by the 150 classes, as seen in Fig.
1. Some instances have ”hairline cracks” of invalid pixels
where the segmentation between two different classes are not
quite flush together. We deal with invalid pixels in two ways:
(1) removing the instance completely from our dataset or (2)
interpolating the data.

Because interpolating on large chunks of invalid pixels
causes inaccurate segmentation maps, we remove instances

with many invalid pixels by using quantile-based binning to
extract the percentage of invalid pixels in each bin. We decide
to cull the top 20% of instances with the most invalid pixels,
giving us a threshold percentage of invalid pixels to cull
at 12.58%. After culling, the dataset is reduced to 17,768
instances. Then we resolved the instances with fewer invalid
pixels by applying nearest-neighbor interpolation onto the
segmentation image, filling the smaller chunks and hairline
cracks of invalid pixels with proper class values. Notice on
Fig. 1, the hairline cracks and invalid pixel chunks should be
small enough in size to interpolate accurately.

(a) (b) (c)

Fig. 1: An instance from the uncleaned ADE MIT Scene
Parsing Benchmark Dataset. (a) original image with RGB
channels (b) segmentation image with classes that map to its
respective color (c) segmentation image with only the invalid
classes masked in black

Next, we normalize the dimensions of all the original
images and their respective segmentation images to 256x256
pixels. We chose this dimension as it was the standard input
dimension for the neural network models. We applied a square-
crop based on the minimum value between the width and
height of the original image. Then we applied a bi-linear
interpolation to shrink the images down to 256x256 pixels.
The shape of the original image and segmentation image is
the same: (height, width, 3), where three represents the RGB
color channels. Instead of requiring three channels to label
a pixel, one 8-bit channel is enough to represent the 150
different classes. For every segmentation image, we created a
new numpy array referred to as a segmentation map of shape:
(height, width, 1). One represents the direct class-value of the
pixel. The values of the segmentation map will be the target
values for our models.

The dataset has a scene label to categorize each image.
Examples of scene categories are: bathroom, countryroad,
street, and library. We decide to further reduce the dataset by
choosing only images of indoor scenes. We exclude outdoor
images because it becomes too much data to process with the
hardware we had available to us, which is limited to an Intel(R)
Core(TM) i7-4790K CPU and a GeForce(R) GTX 1070 GPU.
Also, we deem it appropriate that separate models should
be created: one for indoor navigation as done in this project



and one for outdoor navigation due to the high dissimilarities
between the environments.

While the indoor instances can be isolated using binning
on these scene categories mentioned previously, we find that
much of the images have poorly judged scene categories
designated to them. For example, a scene labeled library
would showcase both the inside of a library room (indoor) and
the entire library building (outdoor). Instead of discriminating
between an indoor and an outdoor scene using scene labels, we
determine an indoor scene by how much certain class pixels
exist in the segmentation map. First, we use a histogram to
determine the most common class objects. The three most
common are wall, building, and sky. Then we apply Pearson
correlation to find that many indoor-labeled scenes have high
correlation with the class wall. Conversely, many outdoor-
labeled scene categories have high correlation with the classes
building and sky. We decide that instances with more wall
pixels than building and sky pixels are indoor instances. From
considering only indoor scenes with this process, our dataset
is reduced to 10638 instances.

Finally, we transform the target feature from categorical to
binary; we are only interested in two possible class labels for
semantic segmentation: non-obstacle and obstacle. The 0 label
represents the class obstacle and the 1 label represents the class
no obstacle. We analyze the target feature correlations and
observe that floor and carpet are the most highly correlated
classes that are not obstacles. Thus, those two classes can
be binned into the new non-obstacle class. The other classes
are assumed to be obstacles and is subsequently binned into
the new obstacle class. This remapping of values for every
segmentation map simplified the dataset for our models.

V. MACHINE LEARNING APPROACH

A. Feature Imputation with Filters

Initially, the only descriptive features of the dataset include
three RGB color channels of the original image. We impute
more features using several image processing filters. First, we
apply a grayscale feature. Then we apply a Canny Edge filter
to emphasise edges between objects and the floor especially.
We also apply blurring filters such as Sobel, Laplace Reflect,
Gaussian-Blur, and Median -Blur to reduce the noise of
detailed objects.

Of course, these filters do not account for the spatial aspect
of pixels. Pixels that are in closer proximity to each other have
a higher chance of belonging to the same material of an object.
Therefore, we apply a Gabor filter to analyze the frequency
of particular textures in localized regions. Finally, we expect
images to be the point of view of a person walking with his or
her eyes looking straight ahead. Consequently, the walk-able
areas with no obstacles will most likely be the floor, which
have a tendency to be located in the bottom rows of the image.
We apply a column and row filter as my last imputations.
After filtering, the number of descriptive features increased
from three to 45.

B. Training

We split the dataset, consisting of 10638 instances using
randomized, stratified sampling in preparation for training.
The stratas are determined by the type of scene an image is
categorized into. The train-validation-test split ration is 80-10-
10. The number of training instances is 8273. The number of
validation instances is 1182. The number of test instances is
1183. The traditional machine learning models we train are:
(1) Logistic Regression, (2) Support Vector Machine (SVM),
and (3) Random Forest.

There are limitations for training these models in terms
of the amount of data and speed. Due to the increase of
descriptive features due to the filters, our dataset size grew by
a factor of 15. Also, each row of the dataset represents features
of a single pixel. Since we scale our segmentation map size
to 256x256, each semantic map would carry 256 · 256 · 45
datapoints. Accounting for the 8273 instances, our dataset
would have a total of 8273 · 256 · 256 · 45 datapoints. The
final number of instances of our imputated dataset would be
542179328, each with 44 descriptive features and 1 target
feature. The training time of these models is exponential to the
amount of input data provided, so using all instances available
is not feasibly due to time and memory constrains of our
hardware.

C. Models

We chose 6 models for this project: 3 traditional and 3
Neural Network approaches. The Logistic Regression model
was chosen as our simplest binary classifier. It is trained
on 256 instances, which takes approximately 2 hours. SVM
takes especially long to train as the amount of data provided
increases. To reduce the training time, we use a linear kernel,
training only on 32 instances. This takes approximately 2
hours to train. Only few training instances are needed to gain
reasonable segmentation for the traditional machine learning
models. Through grid-searching, we find that the best number
of trees for our Random Forest model is k = 5 for 256
instances. This takes 3 hours to train. We are able to extract
a list of the most important features for Random Forest.
The top five important features based on information gain in
order starting from the most were: row, col, red, blue, and
gaussian7. This shows that the models heavily depend on
the spatial features of the image comparatively to the colors
and textures. Note that the small subset of training instances
are chosen to train each model within a reasonable amount of
time. Perhaps to train these models with a larger dataset and
faster training times, we could apply dimensionality reduction
and consider only the top five most important features of our
descriptive features instead of all 45.

VI. NEURAL NETWORK APPROACH

A. EdgeTPU

Google has developed a application-specific integrated cir-
cuit (ASIC) that is specialized for neural network. In particular,
the EdgeTPU is an ASIC designed to be operated on edge
devices. Traditionally, many neural network computations for



applications goes through a process of sending input data into
a cloud server. Then more robust computing systems would
calculate the output and send it back to the client or device.

Alternatively, the EdgeTPU enables high-speed computa-
tions to be executed on the device itself, eliminating the need
of sending the data to the cloud. The EdgeTPU prioritizes
high volume computations and trades off with low precision.
Consequently, the neural network models that are used by the
EdgeTPU must be specially trained to limit the number of
computationally-intensive floating point operations in place of
simple integer operations. These integer precision may be as
low as 8-bits. Compared to 64-bit floating point architectures
such as the Intel Compute Stick, the EdgeTPU achieves lower
power consumption, memory size, and latency [11]. Though,
accuracy of these EdgeTPU-compatible models are often lower
than their original counterpart. However, the crucial trade-off
is lower inference times (latency) for the negligible accuracy
loss in our semantic segmentation application.

B. DeepLabV3

DeepLabV3 is an architecture that uses artrous convolutions
and Artrous Spatial Pyramid Pooling (ASPP) to preserve
information of the original image throughout the layers of
a backbone network [12]. First, it extract features from the
backbone network. Then it uses atrous convolution, known as
dilated convolutions, in the first few layers of the backbone
to control the size of the feature map. The feature maps are
fed into the the ASPP network to classify the pixels to their
respective classes. Finally, the ASPP output is passed through
a final convolution to resize the segmentation map to match
the original image size.

C. Training

The neural network models are trained on the same dataset
used for the traditional machine learning models mentioned
in the previous section. However, there are no filters nor
imputations required. The target features are simply the RGB
channels and implicitly the position of the pixels. We also use
the identical train-validation-test split.

We use the DeepLabV3 training pipeline library to create
many checkpoints. The loss function for all models is binary
cross-entropy. For validation data, the best model checkpoint
is determined by the lowest precision loss. Since the width
and height of our images is 256, the DeepLabV3 training
parameter, eval crop size is set to 257. The reason is that
the Tensorflow documentation calls for the eval crop size to
be at least one pixel larger than the largest image in the
training dataset. Other training parameters such as atrous rates
and learning rates are suggestions given by the DeeplabV3
documentation. The batch size is determined simply by our
hardware constraints, as we choose the highest batch size
that can fit into memory. Note that these parameters may be
further optimized. The backbone networks that we train are:
(1) ResNet, (2) MobileNetV2, and (3) MobileNetEdgeTPU.

1) ResNet: ResNet stands for Residual Network. Its archi-
tecture is composed of residual blocks. Residual blocks are
layers that directly connect to deeper layers whilst skipping
the intermediary layers. This is known as skip connections.
Stacking these residual blocks helps reduce vanishing gradi-
ents. Layers that are not conducive to the overall model may
be skipped. The model was trained with an initial learning rate
of 1 · 10−5 and decays. The batch size is 4. We specify atrous
rates of 6, 12, and 18. The number of steps for the best model
based on the validation data is 60,000 before both the training
and test loss curve plateau. This occurs when the learning rate
is too high after a certain number of steps, so a lower initial
learning rate or a sharper decreasing learning rate may yield
better accuracy for this model.

2) MobilenetV2: The MobileNetV2 is based on inverted
residual networks. The residual connections are connected
between bottleneck layers instead of skipping them. The model
is trained with an initial learning rate of 3 · 10−5 and decays.
The batch size is 8. The number of steps for the best model
based on the validation data is 150,000 from early stopping.
Fig. 2 shows that the validation curve has yet not diverged
completely from the training curve. Therefore, continuous
training beyond these steps may lead to a more accurate model.

3) MobileNetEdgeTPU: The MobileNetEdgeTPU is also
based on inverted residual networks. The theoretically advan-
tageous this model has over the MobileNetV2 is replacing in
layers that better utilize TPU hardware. The model is trained
with an initial learning rate of 3 · 10−5 and decays. The batch
size us 8. We specify an ASPP Convolution filter of size 256.
The number of steps for the best model based on the validation
data is 200,000 due to early stopping. Like the MobileNetV2
model, further training steps may yield lower losses. In fact,
the accuracy metrics and latency between MobileNetEdgeTPU
and MobileNetV2 is reasonably close, and optimizing their
learning parameters may cause one model to outperform the
other.

After training and achieving the best checkpoints for each
model, we convert it to frozen graphs. The frozen graphs
are then further converted to TensorFlowLite files. These
are light-weight TensorFlow models. However, the floating-
point datatypes used in the models cannot be efficiently used
by the EdgeTPU. We need to convert the TensorFlowLite
models to carry simple and small fixed-point computations.
Post-quantize-aware training is an optimization that converts
32-bit floating-point numbers of the model’s weights and
activation outputs into the nearest 8-bit fixed-point numbers.
This yields smaller models, faster inference speed, and less
power consumption due to the lack of complex calculations.
There are several techniques of post-quantize-aware training.
The simplest technique, and the one we use, is Full Integer
Quantization. We apply this by feeding the TensorFlowLite
with a representative dataset to calibrate the minimum and
maximum range of all floating-point tensors in the model.
The representative dataset we use is 256 random instances
from the validation dataset. We choose 256 as a middle
ground between the suggested range of 100 and 500 instances



TABLE I: Evaluation Metrics on the Test Set

TP TN FP FN accuracy precision mIOU AUC latency
Logistic Regression 14046659 543889 1958262 425783 85.9552% 56.0900% 18.5759% 0.593974 11.17444ms

Support Vector Machine 12629829 1650788 851363 1842613 84.1294% 47.2545% 37.9949% 0.766214 13.13960ms
Random Forest 14007531 610621 1891530 464911 86.1178% 56.7739% 20.5800% 0.605957 194.275ms

ResNetV1 27199152 180053616 16679790 13455623 87.3054% 61.9868% 47.4393% 0.792122 337.816ms
MobileNetV2 204427728 25073048 5062372 2825040 96.6774% 89.8737% 76.0700% 0.909191 57.8207ms

MobileNetEdgeTPU 204014224 22977736 7157670 3238608 95.6206% 87.6466% 68.8492% 0.873428 57.2326ms

from TensorFlow’s documentation. The inputs and outputs
of the TensorFlowLite are also quantized to 8-bit integers.
After completing this process, the TensorFlowLite model is
compatible with the EdgeTPU. Note that note all computations
of the new model will be used by the EdgeTPU. Some may
still require the CPU, which may cause bottleneck and higher
latency.

Further, we co-compile each CPU-compatible semantic
segmentation model with an object detection model into
EdgeTPU-compatible models. The object detection model we
are using is the SSD MobileNetV2, provided by Google. The
best performing pair of segmentation and detection models
in terms of recall and inference time is: MobileNetV2 Seg-
mentation and SSD MobileNetV2. Then with EdgeTPU co-
compiling, we redistribute 71 out of the 72 operations of the
segmentation model from the CPU to the EdgeTPU hardware.
We also redistribute 108 out of the 111 operations of the object
detection model from the CPU to the EdgeTPU hardware.

VII. RESULTS

Once a sensible overall model accuracy is achieved by the
binary cross-entropy loss function, precision is the paramount
metric for determining the best model. Precision, shown in
Eq. 1, measures the purity of the positive predictions, non-
obstacles, relative to the ground truth. The best performing
model chosen is the one that maximizes the precision (or rather
minimizes the precision loss shown in Eq. 2). In this project,
we care more about the precision of the obstacle class. Erring
to the side of the user’s safety is warranted. A walkable area
is said to be an area that has no obstacles. The case where an
obstacle is erroneously predicted to be a walkable area, when
it is not, is more critical than the case where a walkable area
is erroneously predicted to be an obstacle. The trade-off is
limiting the person’s walkable area to ensure that he or she
does not run into a potentially dangerous obstacle.

precision =
tp

tp+ fp
(1)

precision loss = 1− precision (2)

Another important metric is the pixel accuracy. Accuracy
gives a simplistic assessment of our models: how many
segmentation predictions are correct out of the all possible
predictions in the image. However, this number may be disin-
genuous towards the usefulness of a model. For example, the
logistic regression model is heavily under-fitted; its segmen-
tation prediction naively consists of almost entirely obstacle

Fig. 2: The Precision Loss Curve measures the Precision
Loss of our best performing model in terms of precision,
MobileNetV2. The blue line shows the loss on the training
data. The orange line shows the loss on the validation data.

predictions. Since the images of our dataset is composed of
mostly head-height perspective, the walkable floor will only
cover a small minority of the images at the bottom. The rest
will be obstacles. Therefore, assuming everything is obstacles
yields a deceptively high accuracy of 85.9552% for the logistic
regression model as seen in Table I. That is due to the
imbalance of data between the floor and the rest of the objects
in each image.

The third accuracy metric we use is the Jaccard index, which
is also known as the Intersection over Union measurement
(IOU). This metric measures the percent overlap between the
target mask and the prediction output. For each class, we
calculate the Jaccard index and averages the results to achieve
a mean IOU (mIOU).

The fourth and final accuracy metric is area under the
receiver operating characteristic (ROC) curve (AUC). AUC
gives a numerical measurement of how well a model can
distinguish between the obstacle and non-obstacle classes.
Along with the AUC score, we plot the ROC curves of the six
models too. This visually shows the correlation between the
true positive rate and the false positive rate as seen in Fig. 3.

The correlation matrix is an intuitive visual representation
of a model’s accuracy. For instance, we can see that all the



Fig. 3: The ROC curves of the six models. The x-axis
represents the false positive rate. The y-axis represents the
true positive rate. The middle dashed line represents a model
that of purely random predictions. The ROC curve with the
highest area under it belongs to MobileNetV2.

models predict obstacle well relative to non-obstacle. This is
shown with a bright yellow color in Fig. 4. We can also see
that the SVM model has relatively high false-positives, which
leads to safety concerns for the user as previously explained.
Also notice that the diagonal line from the top left to bottom
right of the MobilenetV2’s confusion matrix is the brightest
compared to the other squares. Also, note that the cumulative
sum of the number of true positives, true negatives, false
positives, and false negatives differ between the traditional
machine learning models and the neural network models. This
is due to the smaller dataset used to train, validate, and test
the traditional machine learning models. However, the colors
in the correlation matrix provides a visual normalization of
these values.

Fig. 4: The confusion matrices of the six models. The x-axis
is the Predicted label. The y-axis is the True label.

The latency metric measures the speed of processing an
image and formulating its respective semantic segmentation
map. We co-compiled each CPU-compatible semantic segmen-
tation model with an object detection model into EdgeTPU-
compatible models. The object detection model used was the
SSD MobileNetV2, provided by Google. The best performing
pair of segmentation and detection models in terms of infer-
ence time and accuracy was: MobileNetV2 Segmentation and
SSD MobileNetV2. Using this combination, we first tested
the CPU models on the Intel® Core™ i7-11700K Processor
and achieved inference times of 1200 milliseconds on average.
Then with EdgeTPU co-compiling, we redistributed 71 out of
the 72 operations of the segmentation model from the CPU to
the EdgeTPU hardware. We also redistributed 108 out of the
111 operations of the object detection model from the CPU to
the EdgeTPU hardware. We tested the EdgeTPU combination
counterpart on the EdgeTPU and achieved inference times of
65 milliseconds on average–57 milliseconds for running the
semantic segmentation model and 8 milliseconds for running
the object detection model.

In summary, the best performing model is the MobileNetV2
model across all metrics we define precision, accuracy, mIOU,
and AUC–excluding latency. However, the latency between the
MobileNetV2 and MobileNetEdgeTPU model shown in Table
I is negligible for our application. Examples for each model’s
semantic segmentation is show in Fig. 5.



Fig. 5: Examples of predicted semantic segmentation from the
six models. Instances of the non-obstacle class are represented
as yellow pixels. Instances of the obstacle class are represented
as pink pixels.

REFERENCES

[1] J. Steinmetz et al., “Causes of blindness and vision impairment in 2020
and trends over 30 years, and prevalence of avoidable blindness in
relation to VISION 2020: the Right to Sight: an analysis for the Global
Burden of Disease Study.” The Lancet. Global health vol. 9,2 (2021).
[Online Serial]. Available: https://pubmed.ncbi.nlm.nih.gov/33275949/

[2] Austin’s White Cane Day Celebration, “Canes” WhiteCaneDay.
http://whitecaneday.org/canes/ (accessed Nov. 29, 2022)

[3] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz and
D. Terzopoulos, ”Image Segmentation Using Deep Learning: A
Survey,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 7, pp. 3523-3542, 1 July 2022, doi:
10.1109/TPAMI.2021.3059968.

[4] Z. -Q. Zhao, P. Zheng, S. -T. Xu and X. Wu, ”Object Detection With
Deep Learning: A Review,” in IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 11, pp. 3212-3232, Nov. 2019, doi:
10.1109/TNNLS.2018.2876865.

[5] K. Park, et al., ”Real-time Mask Detection on Google Edge TPU”
(2020), arXiv preprint arXiv:2010.04427 (2020).

[6] Abdullahi Madey, Ahmed Sheikh and Yahyaoui, Amani and Rasheed,
Jawad,2021 International Conference on Forthcoming Networks and
Sustainability in AIoT Era (FoNeS-AIoT), Object Detection in Video
by Detecting Vehicles Using Machine Learning and Deep Learning Ap-
proaches,2021, pp. 62-65,doi: 10.1109/FoNeS-AIoT54873.2021.00023

[7] V. Jabade, U. Nahata, N. Jain, A. Pandey and T. Paratkar, ”Ob-
stacle Detection and Walkable Path Detection,” 2022 IEEE Delhi
Section Conference (DELCON), 2022, pp. 1-5, doi: 10.1109/DEL-
CON54057.2022.9753182.

[8] A. Yazdanbakhsh, K. Seshadri, B. Akin, J. Laudon, & R.
Narayanaswami “An Evaluation of Edge TPU Accelerators for Con-
volutional Neural Networks” (2021), arXiv preprint arXiv:2102.10423.

[9] S. Vaidya, N. Shah, N. Shah and R. Shankarmani, ”Real-Time Object
Detection for Visually Challenged People,” 2020 4th International Con-
ference on Intelligent Computing and Control Systems (ICICCS), 2020,
pp. 311-316, doi: 10.1109/ICICCS48265.2020.9121085.

[10] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso and A. Torralba,
”Scene Parsing through ADE20K Dataset,” Computer Vision and Pattern
Recognition (CVPR), 2017.

[11] J. Sengupta, R. Kubendran, E. Neftci and A. Andreou, ”High-Speed,
Real-Time, Spike-Based Object Tracking and Path Prediction on Google
Edge TPU,” 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS), 2020, pp. 134-135, doi:
10.1109/AICAS48895.2020.9073867.

[12] J. P. Rogelio, E. P. Dadios, R. R. Vicerra, and A. A. Bandala, “Object
Detection and Segmentation using Deeplabv3 Deep Neural Network for
a Portable X-ray Source Model,” Journal of Advanced Computational
Intelligence and Intelligent Informatics, vol. 26, no. 5, pp. 842–850,
2022.


